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THE STRATEGIC USES OF VALUE AT RISK:
LONG-TERM CAPITAL MANAGEMENT

FOR PROPERTY/CASUALTY INSURERS
William H. Panning*

ABSTRACT

In contrast to alternative measures of risk, value at risk (VaR) has important virtues—intelligibility,
comparability, and practicality—that make it a potentially valuable tool for strategic decision
making and capital management in a wide variety of industries. However, capital-management
decisions in most industries—including financial services, such as property/casualty insurance—
have time horizons far longer than the one-day horizon that prevails in commercial and invest-
ment banking, where the use of VaR is now concentrated. For VaR to be usefully applied to long-
horizon decisions, it must address three fundamental problems unique to that context: estimation
risk, adaptive risk modification, and franchise risk. This paper describes each of these problems,
shows how they can be solved, and provides examples applicable to property/casualty insurance.

The purpose of computing is insight, not numbers.
—Richard Hamming

1. INTRODUCTION
Of the twin concepts, risk and return, that comprise

the foundation of modern financial analysis, risk has

long been the more troublesome. Return is straight-

forward both to understand and, in most cases, to

measure, despite the persistent efforts of accountants.

Risk, by contrast, is elusive, and measures of it, such

as standard deviation or beta, fail the critical test of

intelligibility: can they be explained in simple terms

to one’s family or, for that matter, the board of direc-

tors? The measures also fail to answer a simple but

crucial question. If one alternative has a higher stan-

dard deviation or a higher beta than another, just how

much greater should its expected return be to justify

choosing it? The answer typically offered, which is

based upon the aggregate choices of others in the
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marketplace, exhibits a Panglossian confidence in col-

lective wisdom and the virtue of conformity. Despite

these disquieting inadequacies, the textbook mea-

sures of risk retain their sway over the generations of

MBAs that now populate the world of business.

Value at risk (VaR) offers an alternative way of

thinking about, measuring, and managing risk that

has three important virtues lacked by other, more tra-

ditional measures of risk. First, VaR is intelligible.

Roughly speaking, VaR for a firm, a project, or a se-

curity is simply the amount of money that it could lose

under extremely adverse circumstances. More pre-

cisely, VaR is an estimate of the maximum loss that

could occur under all but a specified percentage of

possible scenarios, ordered from best to worst. Sec-

ond, VaR is comparable. This potential loss, in dollars

or percentages, can be compared across alternatives

and bears directly on a classic rule for decision mak-

ing: never risk more than you can afford to lose. That

is, VaR specifies the amount of risk capital a firm

needs to undertake a project without threatening its

survival. Third, VaR enables us to answer important

questions. If one alternative has a higher VaR than

another—and therefore requires more risk capital to

undertake it—then this additional amount, multiplied

by the firm’s marginal cost of capital, indicates the



THE STRATEGIC USES OF VALUE AT RISK 85

additional return it should require to justify selecting

that alternative.1

These important virtues make VaR a potentially im-

portant tool for strategic decision making in a wide

range of situations. During the past decade, for ex-

ample, VaR has become an indispensable tool in com-

mercial and investment banking, where it is used to

determine the amount of capital needed to support a

firm’s overall risk exposures. If the amount of capital

needed exceeds the amount available, the firm re-

duces its risk exposures by hedging its current port-

folio of assets and liabilities. The use of VaR for this

purpose is now widespread and has been endorsed by

bank regulators. Moreover, banks also use VaR to at-

tribute capital to the component parts of their busi-

ness, so that they can determine the relative contri-

butions of each to their overall return on capital. This

internal application of VaR is therefore an essential

tool in banks’ continual quest to achieve the maxi-

mum return from their capital.

Nearly every firm faces a similar need to estimate

its overall need for risk capital and to attribute capital

to its component operations or to potential new ones.

Consequently, the evident usefulness of VaR in bank-

ing strongly suggests its potential applicability in

other industries as well. However, as with other im-

portant tools, one must calculate and interpret VaR

in a manner that is appropriate to the context at

hand. It is therefore important to consider whether

there are important differences between banks and

other firms that need to be taken into account in

adapting VaR for more general application.

What distinguishes investment banks from most

other institutions is not the particular type of risks to

which they are exposed, but rather the time horizon

over which information can be gathered and practical

decisions implemented. In large investment banks

VaR is typically calculated for a one-day horizon, and

relevant changes are made to its portfolio of financial

assets and liabilities each day to ensure that VaR re-

mains within specified regulatory and internal limits.

This short time horizon and rapid response time is

made possible by the ability of banks to utilize market

information to price their assets and liabilities each

day. In most other institutions, by contrast, assets and

1Here I have described VaR’s application to a choice among mutually
exclusive, stand-alone alternatives. By contrast, what matters for a
firm with multiple projects or lines of business is the amount of
capital needed to support all of them taken together. In this more
typical case, what matters in evaluating an alternative is its marginal
impact on the firm’s overall VaR. However, VaR has the same virtues
in this more complex problem as well.

liabilities can be priced only occasionally—quarterly,

yearly, or longer—and risk exposures must be mea-

sured and managed over these much longer time

spans.

A property/casualty insurer provides an excellent

example of the long-horizon nature of some risks and

the relevance of VaR to strategic decisions. The bal-

ance sheet of a property/casualty insurer consists

principally of the items shown in Table 1. On the asset

side of the balance sheet are items that can be ana-

lyzed by methods currently used in investment bank-

ing, since the principal risks are market and credit

risk. The liability side, by contrast, is more challeng-

ing. The two largest items are the unearned premium

reserve and the combined loss and loss adjustment ex-

pense reserve (although these are often separated for

reporting purposes, I shall here treat them together

and refer to them as simply the loss reserve). The ec-

onomic value (in contrast to the reported value) of

the unearned premium reserve is the discounted fu-

ture loss and expense payments for future accidents

covered by in-force policies. By contrast, the loss re-

serve is an estimate of future payments for past

accidents.

For most insurers the loss reserve is the single larg-

est liability on its balance sheet and is the focus of

considerable attention by regulators and financial an-

alysts. The existence of this reserve results from the

delays between the occurrence of an accident and the

submission of a claim, and between the claim report

and a final negotiated settlement. For some types of

risk both delays can be substantial. Decades may

elapse, for example, between an insured’s exposure to

a toxic substance and the eventual appearance of

physical symptoms that trigger a claim. The time lag

between provision of coverage and payment of claims

can be abbreviated if an insurer switches from occur-

rence policies, which indemnify the insured against

loss from accidents that occur during the term of cov-

erage, to claims-made policies, which pertain to

claims actually submitted during the term of cover-

age. In either case, however, the lag from claim sub-

mission to final settlement is often prolonged by legal

wrangling.

In determining the value of its loss reserve, a prop-

erty/casualty insurer must estimate future loss pay-

ments both on claims that have been reported but not

yet settled and on accidents that have been neither

reported nor settled. Because the payments ultimately

made may differ considerably from the insurer’s cur-

rent estimate of their value, the insurer must have
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Table 1
Principal Components of an Insurer’s Balance Sheet

Assets Liabilities

Premiums receivable Unearned premium reserve
Reinsurance recoverable Loss and loss adjustment expense reserve
Other receivables Other payables
Invested assets Surplus (net worth)

sufficient net worth, known as surplus, to absorb po-

tential adverse deviations from its estimated reserve.

In contrast to investment banks, which can alter

their asset and liability exposures rather quickly, the

liability risks of a property/casualty insurer change

slowly. Property/casualty risk exposures are difficult

to trade, so that there is neither an active market nor

daily pricing, except in a very few highly specialized

circumstances. As a consequence, the principal value

of VaR for this industry is strategic rather than tacti-

cal. For insurers, it can provide a means to determine

their overall need for capital. Moreover, it can assist

them in identifying the relative contributions of their

various lines of business to their overall capital re-

quirement, so that they can adjust their pricing and

business mix to maximize their return on capital. For

regulators, VaR provides a potentially powerful tool

for ensuring that the companies they oversee are ad-

equately capitalized—a role that it is currently begin-

ning to play in banking as well.

Because of the illiquid nature of insurance liabili-

ties, the strategic decisions just described have time

horizons considerably longer than the one-day horizon

that characterizes VaR measures in banking. Extend-

ing VaR to decisions and alternatives that span these

longer time horizons has the potential to enhance its

usefulness in nonfinancial industries as well. But ex-

tending VaR in this way requires solving at least three

important problems that have received little atten-

tion. These problems are estimation risk, adaptive risk

modification, and franchise risk.

Estimation risk results from the fact that VaR is an

estimate of potential loss under an extreme scenario.

This estimate is subject to error, since it is based upon

a forecast of what asset or liability values will be under

conditions that differ from current ones. Estimation

error is likely to be quite small for investment banks

calculating overnight VaR for portfolios of highly liq-

uid financial assets and liabilities. Applying VaR to

other types of assets and liabilities makes estimation

error more important. Moreover, extending the time

interval over which VaR is calculated magnifies poten-

tial changes from current conditions and thus mag-

nifies the impact of errors in forecasting the response

of assets and liabilities to such changes. Fortunately,

as I shall show, this estimation error can itself be

quantified and taken into account in calculating VaR.

This is as it should be, since the estimation error is

an inherent component of overall risk.

Adaptive risk modification refers to the fact that

over an extended period of time the assets and liabil-

ities of a firm do not remain static but are altered in

response to implicit or explicit decisions prompted by

changing circumstances. In the extreme scenarios

that are the focus of VaR, decision makers do not typ-

ically remain passive but take actions that alter their

perceived risk exposures. Adaptive risk modification is

nearly irrelevant for investment banks calculating

their overnight VaR, but it can be significant for any

firm calculating VaR for longer periods. I shall show

how adaptive risk modification can affect VaR and ex-

plain how it can be taken into account.

Franchise risk is the potential exposure to loss from

assets and liabilities that are not reflected on a firm’s

current balance sheet. The market value of a firm—

the value of its outstanding stock or, for private firms,

the amount a potential buyer would pay to acquire

it—typically exceeds the economic value of the assets

and liabilities included on its balance sheet. What I

here call franchise value is this difference between a

firm’s total market value and its balance sheet value.

It consists, in principle, of the discounted expected

cash flows from future business. Protecting and en-

hancing this franchise value is a critical objective at

most firms. Consequently, if VaR is to become a

longer-term strategic tool, it must take into account

potential exposures to loss of franchise value. For ex-

ample, the discovery of an error in the Intel Pentium

chip created only small losses for the firm’s balance

sheet but had a potentially devastating impact—

ultimately averted—on its enormous franchise value

from future sales. A VaR calculation that failed to take

this effect into account would be incomplete and se-

riously misleading. The challenge, then, is to measure
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Table 2
Payoffs and Risk Measures for Four Alternatives

Alternatives

Possible Payoff at
Probability

50% 49% 1%
Expected

Value

Risk Measures

Standard
Deviation

Probability
of Loss

Expected
Loss

Worst-
Case Loss

A 75 75 2,575 100 249 0% 0 0

B �20 220 220 100 120 50 10 20

C 249 �50 0 100 149 49 24.5 50

D 104 100 �100 100 20 1 1 100

the components of franchise value and include them

in calculations of VaR. In this case I offer only a partial

solution, which consists of measuring franchise value

for one type of firm and showing how this component

of VaR can be calculated for one type of risk.

I begin by presenting a somewhat more thorough

introduction to VaR and its differences from other

measures of risk. I then devote a separate section to

each of the three problems just posed and end with a

brief conclusion. Although these problems and their

solutions are pertinent to any kind of firm, I present

examples applicable to property/casualty insurance.

Throughout, I strive to make the exposition widely ac-

cessible, although some aspects of VaR are unavoida-

bly technical.

2. VAR VERSUS ALTERNATIVE
MEASURES OF RISK

In order to distinguish VaR from other risk measures,

it is helpful to consider the specific example shown in

Table 2. The table shows four alternatives, each of

which has multiple possible payoffs occurring with the

different probabilities shown. The four alternatives

have the same expected value, but different risks.

Standard deviation, the first risk measure, is a sta-

tistical estimate of variability around a mean or ex-

pected value, variability that is often portrayed graph-

ically by a bell-shaped curve. For financial assets or

liabilities, this measure is calculated from a time se-

ries of changes in their value and appropriately ad-

justed to produce the annualized standard deviation

of percentage change in value, the standard measure

of return volatility. Despite its widespread use, vola-

tility of return has two important deficiencies as a

measure of risk. First, it does not conform to the in-

tuitive definition of risk used by most business profes-

sionals. To see why, consider two investment alterna-

tives, one of which (say, one-year Treasury bills or

T-bills) will definitely return 5%, while the second has

a 50-50 chance of returning 8% or 10%. Although the

second alternative has greater variability of return

than the T-bill, most investors would not consider it

riskier, because its return is always higher. Investors

would typically consider the second alternative as risk-

ier only if it had some positive probability of returning

less than the T-bill. Their aim is not to achieve cer-

tainty, but to avoid loss. Most business professionals

thus consider risk as involving a probability of loss—

either absolutely (as in a negative return) or relative

to some riskless alternative (for example, relative to a

T-bill). A second difficulty with standard deviation as

a measure of risk is that it can be highly misleading

when applied to return distributions that differ dra-

matically from a bell-shaped curve. In fact, many of

the new financial instruments developed in the past

decade were specifically designed to create such ‘‘un-

usual’’ return distributions, and their creation has led

to the search for improved risk measures.

If losses are what matter, probability of loss could

be used as a measure of risk. In Table 2, alternative A

has the highest standard deviation of the four alter-

natives, but the lowest probability of loss. What this

measure ignores, unfortunately, is the magnitude of

potential losses. It therefore fails to distinguish be-

tween two alternatives that have different losses, for

example, one small and the other large, but the same

probability of loss. Note that in Table 2 alternatives B

and C have nearly identical probabilities of loss, 50%

and 49%, but that the magnitudes of those losses dif-

fer considerably: 20 in one case, 50 in the other.

Expected loss compensates for this deficiency by

taking into account both the probabilities and the

magnitudes of potential losses. Its value for a given

alternative is obtained by multiplying each potential

loss by its probability and summing these products.

Potential gains are totally ignored. This measure

therefore distinguishes sharply between alternatives B
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and C in Table 2 and considers the latter to be far

more risky (in fact, the riskiest of the four). Expected

loss is the actuarially fair cost of insuring against loss

from choosing that alternative, that is, the least

amount one could possibly pay someone to compen-

sate for a loss should it occur. In investment terms,

expected loss is the minimum cost of a put option

with an exercise price of zero. Where the payoff con-

sists of a continuous range of possible values with

corresponding probabilities, expected loss can be

calculated by an appropriate application of the Black-

Scholes (1973) option-pricing formula. For property/

casualty insurers, Doherty and Garven (1986), Cum-

mins (1988), and Butsic (1994) have shown how ex-

pected loss to policyholders can be calculated and

used to determine insurance pricing, fair premiums

for state insurance guarantee funds, and minimum

capital requirements for insurers.

A final risk measure, one often requested by senior

executives, is the worst-case scenario, defined as the

maximum possible loss. Unlike probability of loss, this

criterion finds alternative C in Table 2 to be more

risky than alternative B and considers alternative D to

have the highest risk of all. In another respect, how-

ever, this measure is not very discriminating, for it will

fail to differentiate between two alternatives that have

the same worst-case loss but dramatically different

probabilities of loss. Despite this defect, worst-case

loss is a valuable measure for one very important rea-

son. It measures the amount of capital needed to sur-

vive the worst outcome that can occur for the alter-

native being considered. If prudence dictates that one

never risk more than one can afford to lose, then

worst-case loss informs the decision maker how much

capital he or she must be prepared to lose in choosing

a particular alternative. As with expected loss, this

measure can be generalized to alternatives with a con-

tinuous range of payoffs. In such cases one calculates

not a worst-case loss (which may be infinite) but a

‘‘highly improbable’’ loss. The procedure requires that

one rank order the payoffs from best to worst. Then

one selects a (very low) probability p of occurrence,

1%, for example, and determines the payoff at the pth

percentile of the ordered distribution. If this payoff is

a loss of 500, then one infers that in selecting this

alternative a capital of 500 is needed to ensure a 99%

probability of survival, or, equivalently, to ensure that

losses greater than 500 will occur with a probability

of 1% or less. If the distribution of possible outcomes

is normal or lognormal, then the same value can be

directly calculated from the mean and standard devi-

ation of the distribution. Such ‘‘highly improbable’’

losses, where the probability is specified, are also

called VaR, or VaR(1 � p), where the term (1 � p) is

the probability of survival. That is, VaR is a measure

of the nearly worst-case outcome.

Generating the Distribution of Outcomes
Since a firm’s capital can absorb risks from any of its

component operations, VaR analysis is typically ap-

plied to the firm as a whole. However, it can equally

be applied to a project, a line of business, or a partic-

ular asset or liability, depending on one’s purposes. In

each case, it is calculated from a distribution of pos-

sible future outcomes. Most of the work needed to

calculate VaR consists of generating that distribution.

Here I outline the principal steps in doing so and focus

on calculating VaR for the value of a firm whose assets

and liabilities consist of fixed-income securities.

1. Identify and price the components of the firm’s
value. Since the objective of VaR analysis is to es-

timate potential changes in the value of the firm,

the starting point must be an estimate of the firm’s

current value. In investment banking, this is done

by determining the market values of the firm’s as-

sets and liabilities, which consist principally of se-

curities that are priced daily. Although many of

these securities are not actively traded and there-

fore do not have prices that can be directly ob-

served, their prices are inferred from those of ac-

tively traded securities. A similar combination of

observation and inference can be utilized in cal-

culating the current value of other types of firms.

2. Identify the underlying processes that affect out-
comes. The price of a bond and the present value

of a loss reserve are determined by the discounted

values of their future cash flows, which are in turn

a function of Treasury spot rates (zero-coupon

bond yields) at different maturities. To model po-

tential changes in the value of a bond or a loss

reserve, one must therefore model changes in

these underlying Treasury rates.

3. Estimate the parameters of these underlying pro-
cesses. For the bond, one must estimate the vola-

tilities of the spot rates that determine its price.

Volatility is the standard deviation (or variance) of

changes in each rate. However, changes in spot

rates at different maturities are not independent of

one another. Rates at different but nearby matur-

ities tend to change in tandem. To take this into

account, one must also estimate the covariances

among rate changes for different maturities. Since

the resulting variance/covariance matrix can be

quite large, this process is often simplified in one
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of three ways. One is to use fewer rates and inter-

polate between them as needed. Another is to use

factor analysis to reduce the size and complexity of

the variance/covariance matrix. A third is to skip

parameter estimation entirely and instead use

bootstrapping—sampling changes that have oc-

curred in historical data—in the following step.

4. Generate the distribution of potential changes in the
underlying processes. For a bond or a loss reserve,

this is the multivariate distribution of changes in

each of the relevant Treasury rates, using the pa-

rameters estimated previously. This step is often

implemented by means of a Monte Carlo

simulation.

5. For each point in this underlying distribution, cal-
culate the effect on the firm. For bonds or loss re-

serves, one must use this distribution of spot rate

changes to calculate the distribution of changes in

their value. This is done by discounting the relevant

cash flows using the combination of spot rates at

each point in the multivariate distribution. Doing

this for all points in the underlying distribution

produces the distribution of overall changes in

value.

6. Select an appropriate value of p, and calculate VaR.
As explained earlier, this is done by (a) ordering

the various outcomes from best to worst, and (b)

selecting the outcome such that only p% of the out-

comes are worse. If p is, say, 5%, then this outcome

is referred to as the 95% VaR. Its interpretation is

straightforward: only 1 � p or 5% of the time is the

outcome likely to be worse than this value.

The preceding outline is extremely general. More

detailed descriptions of VaR calculations for portfolios

of financial assets can be found in Jorion (1997) and

J. P. Morgan (1995).

3. ESTIMATION RISK

The Nature and Consequences of
Estimation Risk
In calculating VaR, as in any statistical modeling ef-

fort, there are numerous sources of error or risk that

result from our imperfect understanding of the phe-

nomena being modeled. Two that are especially im-

portant are specification risk and estimation risk.

Specification risk results from the use of an inappro-

priate model that gives wrong or misleading answers.

For example, volatility estimates are often based upon

an assumed normal distribution of rate changes. By

contrast, the actual distribution exhibits a higher cen-

tral peak and fatter tails than a normal distribution

and is more precisely modeled by a t-distribution or

by a mixture of normal distributions with different vol-

atilities. Similarly, changes in security prices are

sometimes represented as linear functions of rate

changes, although the true relationship is typically

nonlinear. As in the two instances just cited, specifi-

cation error can be deliberate, as a means of speeding

up calculations, and the magnitude of its effect can

be estimated. More commonly, however, it is due to

fundamental ignorance. For example, most VaR mod-

els are incomplete: the financial market risks incor-

porated in such models comprise only a portion—

although certainly a major portion—of the overall

risks to which investment banks are exposed. Losses

due to ‘‘rogue traders’’ are one prominent risk not

included in VaR calculations. Consequently, banks

that use VaR typically compensate for this by using

some multiple of VaR to estimate their capital needs.

Even in the absence of specification error, estima-
tion risk arises from the fact that the estimated par-

ameters of our models will differ from the true values

of those parameters. This type of error arises from the

fact that the data employed to estimate parameters

are only a sample—a potentially unrepresentative

sample—from a much larger set of possible instances.

The following is a graphical example of estimation

risk and its consequences. Suppose that the true re-

lationship between two variables, Y and X, is Y � 2X,
and that we have 100 observations of each, but that

our measures of Y are subject to random error. What

we observe will not be the true relationship, but rather

a scatter of points like those shown in Figure 1.

If we now use linear regression to estimate the re-

lationship Y � a � bX � e, where e represents the

random measurement error, we will typically not ob-

tain the true values a � 0 and b � 2, but values that

depend upon our particular sample. The greater the

random measurement error in Y, the greater the po-

tential deviation of our estimates of a and b from their

true values.

Figure 2 shows the various relationships estimated

from 12 different simulated samples of 100 observa-

tions. Although the range of X in the data was from

�5 to �5, the range of the X axis in Figure 2 has been

increased to better display the differences in the es-

timates obtained. For 100 different estimates from

different samples, the average estimated values of a
and b were nearly identical to their true values, but
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Figure 1
Illustrative Sampled Data
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the estimates obtained from any single sample could

vary rather widely, despite an R-squared of close to 0.6

in nearly every case.

Especially important in Figure 2 is the fact that the

different estimated relationships agree closely at the

mean sample values of Y and X and diverge away from

that point. As one moves farther and farther away

from the average value of the X’s we have observed,

the greater is the potential for our estimate of the

corresponding value of Y to deviate considerably from

its true value. Estimation risk is simply this risk that

the true value of Y will differ from our estimate of it

based on inference or extrapolation from sampled

data.

Estimation risk can affect VaR calculations in at

least two ways. One is in estimating the effect of

changes in market conditions on the values of a firm’s

assets or liabilities. Among invested assets, mortgage-

backed securities provide an especially dramatic ex-

ample. The cash flows from such securities depend in

part upon the proclivity of homeowners to pay off their

mortgages prior to maturity, especially when interest

rates fall below the rate they are currently paying.

Consequently, most algorithms for estimating the

prices of such securities rely upon a statistical model

for forecasting prepayments for different types of

mortgages under different rate scenarios. Such fore-

casts are subject to estimation risk, which can become

particularly severe under the extreme scenarios that

are the focus of VaR calculations. However, although

estimation risk can be quantified and should be in-

corporated into these pricing models, it typically is

not. Instead, the forecasts are treated as determinis-

tic. This omission can have a serious impact on the

estimated price and risk of collateralized mortgage
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obligations (CMOs), which are securities that give the

owner the right to certain classes of cash flows from

a pool of mortgages. In particular, CMOs whose cash

flows are distant in time have values that are ex-

tremely sensitive to estimation error in the prepay-

ment models that are employed. It appears likely,

then, that the risks of such CMOs are drastically un-

derestimated because of the current practice of ig-

noring estimation risk. For some corroborating evi-

dence see Sparks and Sung (1995).

A second important way in which estimation risk

can affect VaR is in the estimation of parameters such

as the volatility of interest rates or of stock market

indices, or the correlations among different types of

risk. In estimating these parameters, VaR models typ-

ically use daily data from the past. But the volatility

estimates that are obtained depend upon the length

of the data series employed. Using data from the past

several years will produce different volatility esti-

mates—and, consequently, different VaRs—than a

longer or shorter data series will produce.

The impact of estimation error or risk on invest-

ment decisions is clearly demonstrated by Bawa,

Brown, and Klein (1979), who use historical data con-

cerning the risks and returns of various securities to

identify efficient portfolios. They show that, in con-

trast to results obtained when estimation risk is ig-

nored, incorporating estimation risk results in port-

folios that are more conservative—that is, less skewed

toward assets that have unusually high returns but rel-

atively short track records.

Estimation risk is especially pertinent for VaR cal-

culations that involve non-market risks, that is, risks

unrelated to security prices. In such cases the data

employed are often limited by availability rather than

by choice. Moreover, there may be a substantial lag

between the occurrence of events that trigger changes

in value and the time at which those changes in value

become fully known. During this interval a firm ex-

posed to such risks faces the problem of using the

sample of data available from the past to estimate fu-

ture changes in its value. Estimation risk results from

the fact that this sample may be unrepresentative and

therefore misleading.

The potential impact of estimation risk on VaR is

magnified by the time horizon over which VaR is cal-

culated. When the horizon is long, the potential range

of changes from current market conditions is much

greater. This, in turn, increases the potential impact

of errors in estimating how the prices of securities will

be affected by such large changes. This can be clearly

seen in Figure 2, which shows that the divergence be-

tween the estimated and the true relationship be-

tween Y and X increases as one moves away from their

mean values in the data used to estimate the relation-

ship. This form of estimation risk is further com-

pounded by errors in estimating market volatility. The

longer the time horizon over which VaR is calculated,

the greater the potential impact of this type of error

as well.

Incorporating Estimation Risk in VaR
A property/casualty insurer’s loss reserve poses two

important statistical problems. The first is estimating

the expected value of future loss payments. The sec-

ond is estimating the distribution of possible devia-

tions from this expected value and the consequent

amount of surplus the firm needs to absorb adverse

deviations with a high probability of remaining sol-

vent. The first of these problems has been studied in-

tensively by actuaries. The second, by contrast, has

received far less attention. In practice, surplus re-

quirements are still widely determined by two tradi-

tional rules of thumb. One focuses on the ratio of in-

surance premiums to surplus, the other on the ratio

of reserves to surplus. Both are inadequate to the

task. The first really focuses on the risks posed by writ-

ing new business, rather than the risks posed by loss

reserves. The second is clearly pertinent but is typi-

cally based upon historical industry averages rather

than upon a rigorous quantitative foundation. Both

are incomplete measures, since the surplus needed by

an insurer depends upon its total risk exposures, of

which adverse reserve development is only one com-

ponent. Here I shall focus on the twin problems of

estimating the expected value of an insurer’s loss re-

serve and determining the distribution of potential de-

viations from this expected value. Solutions to these

two problems are essential if VaR is to become a useful

strategic tool for property/casualty insurers. More-

over, a correct solution to both problems requires at-

tention to the problem of estimation risk.

Two caveats are in order. First, adverse loss reserve

development is only one of the numerous risks that

affect an insurer’s overall VaR and need for surplus.

Consequently, the analysis presented here is intended

to be illustrative rather than complete. Second, loss

payment data often exhibit complexities not present

in the data used here. Although the model I present

in Table 3 can be elaborated to take such complexities

into account, addressing these issues here would de-

tract from the principal point of this section: the fact
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Table 3
Loss Development Triangle

Accident
Year

Development Year

0 1 2 3 4 5 6 7 8 9

0 1,291 791 548 423 334 304 224 230 214 210
1 1,492 881 617 471 390 282 263 241 231
2 1,640 944 685 546 379 320 295 258
3 1,818 1,049 799 522 409 364 297
4 1,992 1,171 774 566 482 376
5 2,056 1,133 814 644 476
6 2,004 1,149 886 609
7 2,023 1,264 824
8 2,131 1,203
9 1,998

Source: Adapted from Corporate 10K.

that long-term VaR must take estimation risk into ac-

count, and in a way that is systematic rather than ad

hoc.

The first step in calculating VaR for a loss reserve

is to determine the expected future cash flows for past

accidents. The data used by property/casualty insurers

and regulators to do this are shown in Table 3, here

for a large firm that writes long-tail business, that is,

lines of business in which loss payments extend over

a long period of time. The data shown here have been

adapted from the firm’s 10K in two ways. First, all

numerical values have been multiplied by a constant,

to conceal the firm’s identity. Second, although the

original data were cumulative, from left to right, I

have here shown the decumulated values. The use of

decumulated values is essential for two reasons. First,

they are the actual payments that occurred in each

period and therefore constitute the correct basis for

estimated expected cash flows in each future period.

Second, I will model these payments as consisting of

two parts: an expected or predictable part, and a ran-

dom deviation or error. It is these deviations or errors

that will enable us to ultimately calculate the distri-

bution of overall deviations from the expected value

of the reserve. The use of cumulative values, which is

common, conflates errors for different periods and

makes them difficult to model correctly.

Each row in Table 3 represents a particular accident
year, defined as the year in which an accident oc-

curred that was covered by the firm’s policies. Here I

have replaced the actual calendar year numbers with

the digits from zero to nine. Each column in the table

represents a particular development year, defined as

the number of years subsequent to the accident year

in which payments were made. A payment occurring

in development year zero was in fact made in the same

calendar year as the one in which the accident oc-

curred; payments in development year one occurred

in the calendar year following the accident; and so

on. The entry Pij in row i and column j of the table is

the total amount paid by the firm for losses incurred

in accident year i but paid in development year j, that

is, j years later. Note that the payments on any diago-

nal of the table were made in the same calendar year

i � j.
The firm’s loss reserve is an estimate of the total

payments it will make in future years for accidents

that have already occurred. These payments consist of

the unknown entries in the blank portion of the table,

as well as those occurring to the right of the table, in

development years ten and higher.

Actuaries have developed a variety of methods for

estimating loss reserves. Unfortunately, the methods

most commonly in use are ill-suited for determining

VaR. There are two important reasons for this. First,

these methods are essentially ad hoc, in that they lack

a basis in an underlying model of the data. As a con-

sequence, they produce parameters without reference

to a well-defined statistical measure of goodness of fit

to the data. Second, because of this they provide no

statistical basis for estimating the magnitudes and

probabilities of possible deviations from the estimates

they produce. The procedure employed here, which

remedies both these defects, is based upon work by

Taylor (1987).

The model used here to represent the data in Table

3 is

P � a � f(i) � f( j) � e ,ij ij

where a is an estimate of P00, f(i) is a function that

represents changes in the volume of losses over acci-

dent years, f( j) is a function that represents the pat-

tern of payouts over development years, and e is an
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Table 4
Parameter Estimates for Loss Payment Data with R-Squared 0.996 and Standard Error 0.047

Parameter
Estimated

Value
Standard Error
for Parameter t-Statistic

ln a 7.199 0.020 360.9
b1 �0.526 0.017 �30.8
b2 0.049 0.005 9.5
b3 �0.0016 0.0004 �3.7
b4 0.114 0.009 13.2
b5 �0.008 0.001 �7.1

Table 5
Fitted Loss Payment Data

Accident
Year

Development Year

0 1 2 3 4 5 6 7 8 9

0 1,339 830 562 413 325 272 240 221 210 205
1 1,489 923 625 459 361 303 267 246 234
2 1,630 1,010 685 502 396 331 292 269
3 1,758 1,089 738 542 427 357 315
4 1,866 1,156 783 575 453 379
5 1,950 1,208 819 601 473
6 2,007 1,244 843 618
7 2,034 1,261 854
8 2,030 1,258
9 1,994

error term. For example, suppose that losses are grow-

ing by a constant percent each accident year. In that

case f(i) � exp(bi), where b is the growth rate and i
is the accident year. Similarly, if loss payments in each

year are decreasing at a constant rate, then f(j) �
exp(cj), where j is the development year and c is the

percentage change in payments from one develop-

ment year to the successive one. More complex func-

tions can also be used if needed. For example, we

might use f( j) � exp(c1 � j � c2 � j2 � c3 � j3).
By taking logarithms of both sides of the preceding

equation we obtain

ln P � ln a � ln f(i) � ln f( j) � ln eij,ij

which is in a form suitable for use in linear regression.

For the data in Table 3 we will here specify f(i) as

exp(b1 � i � b2 � i2) and f( j) as exp(b3 � j � b4 � j2 � b5

� j3). The final form of the equation that we will use is

therefore

2ln P � ln a � b � i � b � i � b � jij 1 2 3

2 3� b � j � b � j � ln e .4 5 ij

The parameter estimates obtained from linear regres-

sion are shown in Table 4. In addition to the estimated

values of the model parameters, Table 4 also shows

the standard errors of each parameter (the standard

deviation of the estimated parameter value) and the

corresponding t-statistics, the ratios of the estimated

values to their standard errors. A t-statistic with an

absolute value greater than 2.0 indicates that the es-

timate obtained is highly unlikely to have a true value

of zero. Overall fit to the data appears to be excellent,

as indicated by a high value of R-squared and a low

standard error for the overall equation.

This apparent excellent fit between model and data

is confirmed by several additional comparisons be-

tween the data and the estimated values. Table 5

shows the estimated values of Pij obtained from the

regression equation.

The error terms in the model, consisting of differ-

ences between the logged original data and the fitted

logged values, are shown in Table 6. These are ap-

proximately equal to the percentage differences be-

tween fitted and actual unlogged values. One would

statistically expect one or two of these values to be at

least twice the standard error of the equation, and

that is indeed the case. However, there appear to be

no systematic patterns that would suggest possible

specification error.

The absence of specification error can be confirmed

in another way as well. Systematic accident year errors

can be detected by calculating and comparing, for the
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Table 6
Deviations of Actual from Fitted Loss Payment Data

Accident
Year

Development Year

0 1 2 3 4 5 6 7 8 9

0 �3.5% �4.7% �2.5% 2.5% 2.9% 11.0% �7.0% 4.1% 2.0% 2.5%
1 0.3 �4.5 �1.2 2.7 7.7 �6.9 �1.4 �1.9 �1.2
2 0.7 �6.7 0.2 8.4 �4.1 �3.4 1.1 �4.1
3 3.5 �3.7 8.1 �3.5 �4.2 1.9 �5.7
4 6.7 1.4 �1.1 �1.4 6.4 �0.8
5 5.4 �6.4 �0.4 7.1 0.6
6 0.0 �7.8 5.1 �1.5
7 �0.4 0.4 �3.5
8 5.0 �4.4
9 0.3

logged actual and fitted values, the difference between

the average (logged) values in each row and the av-

erage of the corresponding values in the top row. Sys-

tematic development year errors can likewise be spot-

ted by applying the same procedure to the columns of

the logged actual and fitted data. These comparisons

are shown in Figures 3 and 4. Both confirm a close fit

to the data and the apparent absence of specification

error in the model.

Finally, the distribution of errors, fitted here by

means of a procedure called kernel density estima-

tion2 (Silverman 1986), displays symmetry and a rea-

sonable approximation to a normal distribution, as

shown in Figure 5.

The results obtained so far now enable us to obtain

the expected future loss payments that comprise this

insurer’s loss reserve. These forecast values are sub-

ject to three sources of error:

1. Specification error: systematic differences between

the model and the data on which it is based, dif-

ferences that will produce a biased forecast. The

extensive analysis of errors and comparisons be-

tween actual and fitted values were designed to en-

sure that this source of error has been minimized.

2. Random error: random deviations between actual

and fitted or forecast payments. These errors are

represented by the error term in the fitted equa-

tion and can be anticipated to occur in the future

2Kernel density estimation, a procedure for producing a relatively
smooth distribution from N data points, consists of the following
steps: (1) Create N normal distributions, each with a mean equal to
one of the data values, and a standard deviation S. (2) Calculate the
overall distribution by averaging the N individual distributions.
(3) Use one of several criteria (such as maximum likelihood) to de-
termine an appropriate value of S. When S is tiny, the result will
consist of N spikes. As S is increased, the number of spikes will di-
minish until the overall distribution ultimately becomes nearly flat.

as well. Their magnitude is estimated by the stan-

dard deviation of the fitted model. Note, however,

that this model applies to the logarithms of the

data. Consequently, actual errors will in fact be dis-

tributed lognormally for each payment.

3. Estimation error: differences between the true val-

ues of the model parameters and the estimated val-

ues obtained from the data. This source of error is

reflected by the fact that each parameter has a

standard error that represents the probability dis-

tribution of this actual value around its estimated

value.

All three sources of error affect the values of fore-

cast future payments. Because the independent vari-

ables—here consisting of powers of i and j—are

known for each future payment, we can calculate the

logged forecast payments using the parameters esti-

mated from the available data. However, the expected

unlogged payment is not the antilog of the expected

logged payment. Instead, it is exp(Eij � Sij
2/2), where

Eij is the expected logged value of payment Pij and Sij
is the standard deviation of the forecast error of that

logged value. Forecast error reflects both random er-

ror and estimation error.

The variance of the forecast error for the individual

(logged) future payments is the main diagonal of the

variance/covariance matrix of forecast errors. This

matrix, V, is equal to se2[I � Xf(X�X)�1Xf�], where se
is the standard error of the regression equation, X is

the matrix of independent variables used in the re-

gression (which includes a leading column of ones for

estimating the intercept term), Xf is the matrix of in-

dependent variables for the unknown logged payments

to be forecast, and I is the identity matrix, which has

ones on its main diagonal and zeros elsewhere.

The resulting (unlogged) forecast future loss pay-

ments through development year nine are shown in
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Figure 3
Actual and Estimated Log Accident Year Payment Ratios
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Table 7
Estimated Future Loss Payments

Accident
Year

Development Year

0 1 2 3 4 5 6 7 8 9

0
1 228
2 256 250
3 290 276 269
4 334 308 293 286
5 396 349 322 306 298
6 487 408 360 331 315 307
7 627 494 413 365 336 319 311
8 852 625 493 412 364 335 319 311
9 1,236 837 615 484 405 357 329 313 305

Table 8
Standard Deviation of Estimated Future Loss Payments

Accident
Year

Development Year

0 1 2 3 4 5 6 7 8 9

0
1 6.0%
2 5.2% 6.1
3 5.0% 5.2 6.2
4 5.0% 5.0 5.3 6.3
5 4.9% 5.0 5.1 5.3 6.3
6 4.9% 5.0 5.0 5.1 5.4 6.3
7 5.0% 5.0 5.1 5.2 5.2 5.4 6.3
8 5.2% 5.2 5.3 5.3 5.4 5.4 5.6 6.4
9 5.5% 5.6 5.7 5.8 5.8 5.9 5.9 6.0 6.7

Table 7, and their standard errors (as percentages)

are shown in Table 8.

It is evident from the forecast payments in Table 7

that additional payments are likely to occur in devel-

opment years ten and above. Here these payments

were forecast by assuming that the proportional de-

crease in value from one development year to the next

is identical to the decrease from development years

eight to nine in the fitted values in Table 5. For ex-

ample, in the first row of Table 5, the forecast values

for development years nine and eight are 205 and 210.

The ratio 205/210 � 0.975. Consequently, the fore-

cast values for all development years greater than ten

are E[Pi9] � 0.975(J�9).

This procedure makes it possible to develop an over-

all development year payout pattern, which consists of

the percentage of total accident year losses that are

paid out in each development year. This payout pat-

tern for the company analyzed here is shown in Fig-

ure 6.

We have now obtained estimated loss payments

E[Pij] for all future years. From these estimates we can

calculate the estimated undiscounted loss reserve,

which is �E[Pij] for all j � i. We can also discount

each such cash flow at an appropriate rate to obtain

a discounted value for the reserve.

The procedure just described solves the first prob-

lem: establishing the expected value of the insurer’s

loss reserve. What remains is the second problem: de-

termining the distribution of possible deviations from

this expected value. This is an essential step in cal-

culating VaR for the loss reserve or for the firm as a

whole. The key in both cases is V, the variance/covar-

iance matrix of forecast errors. Inspection of this ma-

trix shows that forecast errors are in fact correlated

with one another. That is, one cannot assume that the

forecast errors for different future payments are in-

dependent of one another. Fortunately, the interde-

pendencies among forecast errors can be taken into

account by means of Monte Carlo simulation. Here I

used @RISK� to generate 1,000 scenarios, in each of
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Figure 6
Development Year Payout Pattern
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Figure 7
Distribution of Total Nominal Payments
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which a random error was selected for each forecast

future payment from a multivariate distribution that

reflected the variances and covariances of forecast er-

rors. For each scenario I calculated two values: the

sum of the future payments, and their discounted

value at a 6% annual rate of interest. The distributions

of the nominal and discounted totals are shown in Fig-

ures 7 and 8.

Summary statistics for the two distributions are

shown in Table 9. The first column shows the mean of

the two distributions, and the second column shows

the first percentile for each distribution. The differ-

ence between this second number and the first, shown

in the third column, is the 99th percentile VaR in

each case. This is the amount of surplus the firm

should have in order to be 99% confident of being able

to successfully fund its loss reserve liabilities. The final

column in Table 9 shows the ratio of the expected

payments to this surplus. These ratios are quite high

relative to industry averages and widely used rules of

thumb. However, a portion of this difference is no

doubt attributable to the fact that other sources of

risk not examined here require additional surplus.

The objective of this example has been to demon-

strate how estimation risk can be incorporated into

the calculation of VaR. It is not intended to provide a

complete analysis of the risks and capital require-

ments posed by an insurer’s loss reserve. It takes no
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Figure 8
Distribution of Total Discounted Payments
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Table 9
Summary of Monte Carlo Simulation Results

Simulation Mean
First

Percentile Difference
Reserve to

Surplus Ratio

Nominal 63,120 66,560 3,440 18.3

Discounted 35,863 37,600 1,737 20.6

account, for example, of potential changes in the

value of the discounted reserve resulting from changes

in interest rates. This risk has been extensively dis-

cussed elsewhere (see, for example, Panning 1995)

and is highly correlated with concomitant changes in

the market value of the insurer’s invested assets.

The overall significance of estimation risk for VaR

estimates depends upon the length of the time hori-

zon, as noted earlier. For the particular case of loss

reserves, it also depends upon both the loss payment

pattern and the magnitude of random error to which

individual payments are subject. Short-tail lines of

business, in which most losses are paid within a rela-

tively few years, are subject to less estimation risk

than are long-tail lines. This is clearly seen in Figure

9, which shows the magnitude of forecast error by de-

velopment year. It is clear that forecast error begins

to grow exponentially beyond year nine. Since forecast

error consists of random error and estimation error,

and since the former is roughly constant, the upward

trajectory of the graph is due almost solely to in-

creases in the magnitude of estimation risk.

The significance of estimation risk also increases

with the magnitude of random error. The random

component of forecast error varies across different

lines of business and across different insurers. When

random error is small, as in this example, estimation

risk is also relatively small. But as random error in-

creases (such as across different lines of business), so

does the magnitude of estimation risk. Nonetheless,

as this example has demonstrated, the magnitude of

estimation risk can be quantified and included in the

determination of VaR.

4. ADAPTIVE RISK MODIFICATION
In calculating VaR for an extended time horizon, one

cannot safely assume that the assets and liabilities of

a firm remain static. Even under the most benign sce-

narios, changes will occur because of normal business

operations. Under the extreme scenarios that are the

particular focus of VaR calculations, however, dra-

matic changes will almost certainly occur as decision
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Figure 9
Forecast Error by Development Year
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makers attempt to modify their risk exposures in re-

sponse to the changing circumstances of the firm or

of their particular portion of it.

An excellent example of this phenomenon is found

in most investment operations. With the exception of

managers of index funds, most traders and portfolio

managers seek to enhance investment returns by ac-

tively trading their accounts in response to changes

in the marketplace. In some cases their responses are

planned and explicit. In others they are instinctive and

implicit. In nearly all cases, however, their actions

have systematic consequences for VaR calculations.

To illustrate this point in some depth, I simulate

the behavior of three investment portfolios that are

initially identical; that is, they have the same initial

market value (100) and the same initial asset com-

position, with 50% invested in one-year bonds yielding

5% and 50% invested in a non-dividend-paying stock

that has an initial price of 100, an expected return of

10%, and a standard deviation of 20%. A VaR calcula-

tion that assumed these portfolios would remain static

would produce the same number for all three portfo-

lios. In fact, one of the three portfolio managers fol-

lows a buy-and-hold strategy and does indeed have a

static portfolio composition. However, the other two

portfolios do not remain static over time. One port-

folio manager is a momentum buyer, who buys addi-

tional stock as it rises in price and sells stock when

its price declines. A second portfolio manager follows

the classic ‘‘buy-low-sell-high’’ strategy and conse-

quently buys stock when its price falls and sells stock

when its price rises. In the simulation, their response

to changing stock prices is equal but opposite in di-

rection, so that their combined portfolios have the

same static composition as the buy-and-hold portfolio.

Each scenario in this simulation consists of 250

market days of activity, which is equivalent to a year

of calendar time. Each day the bonds held by each

portfolio accrue interest, and the stock changes in

price in a logarithmic random walk: that is, the daily

percentage changes in the price of the stock comprise

a normal distribution in which price changes on suc-

cessive days are independent. At the end of each day,

the two active managers buy or sell stocks and bonds

in response to these price changes. Transaction costs

are assumed to be zero.

The rules followed by the two active managers are

identical in form:

1P � ,
1 � exp(a � b � b � c)

where P is the percentage of the portfolio invested in

stock, a and b are parameters, and c is the cumulative

percentage change in the price of the stock since

inception (the beginning of the simulated year). The

parameter a � 0 for both managers. The parameter b
determines the direction and magnitude of their re-

sponse to changes in the stock price. I have set b �
10 for the momentum manager, and b � �10 for the

buy-low-sell-high manager. A graphical illustration of

the response curve for the momentum manager is

shown in Figure 10. The response curve for the other

manager is the left-to-right mirror image of the one
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Figure 10
Momentum Response Curve
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Figure 11
Return Distributions for Alternative Strategies
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shown. At the midpoint of the response curve, the re-

sponse to stock price changes is approximately b/4.

That is, for the momentum manager, a 1% change in

the stock price will induce him or her to increase the

stock percentage of his portfolio by 2.5%, relative to

the proportion held the previous day. Note that a por-

tion of this increase will have occurred naturally due

to the increase in the price of the stock.

For each yearlong scenario, consisting of 250 daily

price changes, the ending values for the three port-

folio managers will typically be different. For 1,000

such scenarios, the distribution of year-end portfolio

values for the three portfolios is shown in Figure 11.

The distribution for the buy-and-hold portfolio is

lognormal. Relative to it, the momentum strategy

clearly has a longer upside tail and a lower downside

risk, and the buy-low-sell-high strategy has just the op-

posite characteristics.

Further insight into the consequences of the two

active strategies can be gained from Figures 12 and

13, which show the relationship between the ending

value of each portfolio and the ending price of the

stock for each of the 1,000 scenarios. The straight line

in both graphs shows the ending value of a portfolio

consisting only of stock. The results for the momen-

tum strategy closely resemble those obtained by own-

ing the stock and buying a put option on the stock

with an exercise price of about 90. By contrast, the

results for the buy-low-sell-high strategy resemble the

results obtained from owning the stock and selling a

call option on the stock with an exercise price of

about 110.

As one would expect from these graphs, the mo-

mentum strategy has the lowest VaR of the three port-

folios, and the buy-low-sell-high strategy has the high-

est. The results for one set of 1,000 scenarios are
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Figure 12
Results of Momentum Strategy
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Figure 13
Results of Buy-Low-Sell-High Strategy
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summarized in Table 10, in which VaR is expressed as

a percentage of the initial portfolio value.

These results show that, when VaR is calculated for

a long-term horizon, one cannot simply examine the

initial composition of a portfolio of assets or liabili-

ties. Instead, one must include in the VaR calculation

the likely response of asset or liability managers to the

events included in the scenarios that serve as the basis

for the VaR calculation. While this may seem difficult

or even impossible, in fact it presents a valuable op-

portunity, since different strategies have quite differ-

ent implications for the capital needed by the firm.

The real challenge is to make the strategies that de-

cision makers follow explicit rather than implicit, to

systematically examine their implications for the firm,

and then to ensure that these strategies are in fact

followed. Doing this can have substantial benefits for

the firm. For example, it is unlikely that most invest-

ment officers realize that following a buy-low-sell-high

strategy requires a considerably higher commitment

of the firm’s capital than following a momentum strat-

egy, quite apart from differences in the average re-

turns of the two strategies.

This conclusion applies not only to investment port-

folios, but to any portfolio of assets and/or liabilities.

For example, many firms follow an implicit momen-

tum strategy with the various lines of business that

they manage, a strategy that consists of investing to

expand a business when its profitability is high, and

contracting or selling it when its profitability declines.

Using such a strategy creates what are called ‘‘real

options,’’ asymmetric return profiles similar to the
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Table 10
VaR for Three Portfolio Strategies

Percentile Momentum Buy and Hold Buy Low Sell High

95% 5.3% 6.6% 8.4%
99 6.2 11.8 18.7
99.9 7.1 14.5 24.7

one produced by the momentum strategy just pre-

sented. This subject is treated in depth by Dixit and

Pindyck (1994) and Trigeorgis (1996).

5. FRANCHISE RISK
The objective of most strategic decisions is to increase

the value of the firm. VaR is potentially useful in that

context because it focuses on the marginal implica-

tions for risk capital of the different alternatives under

consideration. But if VaR is to become a useful stra-

tegic tool, it must be able to take into account the

various risks to which the value of the firm is exposed.

This, in turn, implies that VaR must be based upon a

correct initial estimate of the firm’s total value.

In the case of a property/casualty insurer, an obvi-

ous procedure for estimating the value of the firm

would be to ascertain the market value of the firm’s

assets and subtract from that the estimated present

value of the firm’s liabilities, suitably adjusted for

their risk. This is in fact a common practice in esti-

mating and managing the sensitivity of an insurer’s

surplus to changes in interest rates. Unfortunately,

this procedure is highly misleading, for it ignores that

portion of the firm’s value that cannot be ascertained

from its balance sheet.

The market value or purchase price of an insurer is

typically higher than the amount obtained by econom-

ically valuing its balance sheet. The difference consists

of what I here call franchise value: the present value

of the firm’s expected cash flows from business it will

write in the future. Most of an insurer’s clients tend

to renew their policies, since there are significant

practical costs to switching to another firm. Moreover,

insurers create incentives for their clients to renew.

As a consequence, a typical insurer can expect to re-

tain around 60–90% of its existing clients from one

year to the next. Even if it attracts no new clients, an

insurer can anticipate significant future profits from

retentions alone. Unfortunately, accounting standards

do not permit this franchise value to be recognized

unless a firm is in fact purchased, in which case the

excess of the purchase price over book value is treated

as an asset and inserted onto the balance sheet of the

acquirer.

This fact has two important implications for the

strategic use of VaR. First, franchise value is too im-

portant to be ignored, since enhancing that value is

an important objective of many strategic decisions.

Second, the components of franchise value, and their

exposures to various types of risk, should be modeled

and included in VaR in the same fashion as compo-

nents that are in fact recognized by accounting stan-

dards. In this section I show how this can be done for

a property/casualty insurer with respect to one source

of risk. A more detailed treatment of this problem is

presented in Panning (1995).

In the example presented here I focus exclusively on

franchise value and the potential changes in its value

due to changes in interest rates. I have simulated an

insurer that currently writes policies with a premium

of 100 and loss payments totaling 100 with a payout

pattern that decreases gradually from 25% to 2% in

development years zero through ten. Its retention rate

is 90%, and the current interest rate is 6%.3 All other

complexities, such as expenses, taxes, and changes in

loss ratios with subsequent renewals, are ignored for

purposes of illustration. The present value of its prof-

its from the firm’s retentions (I ignore potential sales

to new clients) is approximately 83.6.

If interest rates change but all other conditions in-

cluding premiums remain constant, the present value

of these retentions—the firm’s franchise value—will

change accordingly. Figure 14 shows the effect of dif-

ferent rate changes on the franchise value. Note that

franchise value increases when rates rise: behavior

that is opposite from that of a bond. This is due to

the fact that the duration (interest rate sensitivity) of

future premiums is lower than the duration of future

loss payments (which occur later in time than pre-

mium inflows).

3This is not the firm’s cost of capital. The fact that a firm must pro-
vide a reasonable rate of return to its suppliers of capital has strong
implications for the profit margins it must generate, but virtually no
bearing on the appropriate interest rate for discounting its future
cash flows.
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Figure 14
Effect of Interest Rate Changes on Franchise Value

When Premiums Remain Constant
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Figure 15
Distribution of Changes in Franchise Value

When Premiums Remain Constant
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Since interest rates do in fact change, I have sim-

ulated the distribution of changes in franchise value

that results when the volatility (standard deviation of

interest rate changes, as a percentage of the initial

rate) is 15%. This distribution, shown in Figure 15, is

reverse lognormal, as one would expect from Figure

14. The 99% VaR for franchise value is 21% of its ini-

tial value.

Now let us add one small but important—and re-

alistic—complexity to the simulation. Let us assume

that, when interest rates rise or fall, at least some

firms in the insurance marketplace alter their prices

(premiums) to gain or retain market share. If the firm

we are simulating maintains its current price, then its

retention rate will decline, since at least some of its

clients will be attracted to the competitors’ lower

prices. On the other hand, if it matches its competi-

tors’ price cuts, then its franchise value will be lower

than would otherwise be the case.

In either case the overall effect is nearly the same:

lower cash flows from retentions. The results for this

more complex case are shown in Figure 16. Note that

the effect of interest rate changes on franchise value

is now reversed: an increase in interest rates now re-

duces the firm’s franchise value.

The distribution of possible changes in franchise

value for this situation is shown in Figure 17. The 99%

VaR is again 21% of the initial franchise value, but this

now occurs under conditions that are the opposite of

those found in the preceding simpler case.
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Figure 16
Effect of Interest Rate Changes on Franchise Value
When Premiums Vary Inversely With Interest Rates
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Figure 17
Distribution of Changes in Franchise Value

When Premiums Vary Inversely with Interest Rates
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What makes this simplified analysis of franchise

value particularly significant is the fact that the in-

surer can substantially reduce the VaR for its fran-

chise value by altering the duration of its invested as-

sets. In the first case, in which premiums remain

constant, the insurer can reduce VaR by extending its

asset duration. In the second case, in which the in-

surer alters premiums or loses business to competi-

tors, it can reduce VaR by shortening the duration of

its investments. In either case, by making this change

the insurer creates a situation in which the change in

its franchise value produced by a change in interest

rates is exactly offset by an equal and opposite change

in the value of its invested assets. However, by acting

appropriately to achieve such a reduction in franchise

risk, the insurer will appear to be taking additional

risk, since franchise value is not included on its bal-

ance sheet. (For a more detailed example and dem-

onstration of these points see Panning 1995.)

This example has several important implications.

First, when applying VaR to the firm as a whole, it is

important to include in the analysis all components of

the firm’s value, including those not recognized by

current accounting standards. Second, in calculating

a firm’s VaR for an extended horizon, the analysis

should take into account risk factors that are not nor-

mally included in short-term VaR calculations, factors

such as the effect of competition. This is, in fact, a

generalization of the point presented in the above

analysis of adaptive risk modification. When VaR is

calculated for long-term horizons, it is essential to

include in the analysis the likely actions of relevant
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decision makers, including customers and competi-

tors as well as the managers of the firm.

6. CONCLUSION
The concept that underlies the calculation of VaR is

in fact quite old. VaR is in principle nothing more

than what statisticians call a one-sided confidence in-

terval. What is new is the availability of high-speed

computers and historical data needed to implement

these calculations for large and complex portfolios of

securities. These same resources also make it possible

to calculate VaR for assets and liabilities other than

securities, for firms other than investment banks, and

for decisions that are strategic rather than tactical.

But VaR will be useful in these other contexts only if

it successfully takes into account the longer time ho-

rizons that prevail in them.

As we have seen, time horizons longer than those

prevalent in investment banking pose three problems

for VaR analysis. Estimation risk—the risk of inaccu-

rately forecasting the response of assets or liabilities

to changing conditions—can in fact be quantified and

incorporated into VaR by using appropriate statistical

methods. Adaptive risk modification—the responses

of decision makers to changes in their circum-

stances—can likewise be incorporated by correctly

modeling them and including these responses in each

of the scenarios from which VaR is calculated. Finally,

franchise risk is appropriately incorporated by refus-

ing to take the firm’s balance sheet at face value and

by again carefully modeling and including pertinent

strategic decisions in the analysis.

The arguments, examples, and solutions presented

here by no means exhaust the challenges that must

be addressed in extending the scope of VaR to other

industries and to decisions that are strategic rather

than tactical. Nonetheless, I believe they provide a

useful starting point for making greater use of the

considerable virtues of VaR.
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